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Abstract
The e�ects of sampling are investigated on measurements of counts-in-cells in three-dimensional magnitude

limited galaxy surveys, with emphasis on moments of the underlying smooth galaxy density �eld convolved
with a spherical window. A new estimator is proposed for measuring the k-th order moment h�ki: the
weighted factorial moment ~Fk[!]. Since these statistics are corrected for the e�ects of the varying selection
function, they can extract the moments in one pass without the need of constructing a series of volume
limited samples.

The cosmic error on the measurement of ~Fk[!] is computed via the the formalism of Szapudi & Colombi
(1996), which is generalized to include the e�ects of the selection function. The integral equation for �nding
the minimum variance weight is solved numerically, and an accurate and intuitive analytical approximation
is derived !optimal(r) / 1=�(r), where �(r) is the cosmic error as a function of the distance from the
observer. The resulting estimator is more accurate than the traditional method of counts-in-cells in volume
limited samples, which discards useful information. As a practical example, it is demonstrated that, unless
unforeseen systematics will prevent it, the proposed method will extract moments of the galaxy distribution
in the future Sloan Digital Sky Survey (hereafter SDSS) with accuracy of order few percent for k = 2, 3 and
better than 10% for k = 4 in the scale range of 1 h�1 Mpc � ` � 50 h�1 Mpc. In the particular case of the
SDSS, a homogeneous (spatial) weight ! = 1 is reasonably close to optimal.

Optimal sampling strategies for designing magnitude limited redshift surveys are investigated as well. The
arguments of Kaiser (1986) are extended to higher order moments, and it is found that the optimal strategy
depends greatly on the statistics and scales considered. A sampling rate f � 1=3� 1=10 is appropriate to
measure low-order moments with k � 4 in the scale range 1 h�1 �< ` �< 50 h�1 Mpc. However, the optimal
sampling rate increases with k, the order considered, and with 1=`. Therefore count-in-cells statistics in
general, such as the shape of the distribution function, high order moments, cluster selection, etc., require
full sampling, especially at small, highly nonlinear scales ` � 1 h�1 Mpc.

Another design issue is the optimal geometry of a catalog, when it covers only a small fraction of the sky.
Similarly as Kaiser (1996), we �nd that a survey composed of several compact subsamples of angular size

F spread over the sky on a glass-like structure would do better, with regards to the cosmic error, than the
compact or the traditional slice like con�gurations, at least at small scales. The required dynamic range of
the measurements determines the characteristic size of the subsamples. It is however di�cult to estimate,
since an accurate and cumbersome calculation of edge e�ects would be required at scales comparable to the
size of a subsample.

keywords: large scale structure of the universe { galaxies: clustering { methods: numerical {
methods: statistical



1. Introduction

The large scale structure of the Universe is generally admitted to be homogeneous at scales above
� 150 Mpc. At smaller scales, observations of the galaxy distribution show a remarkable clustering
as evidenced by voids, clusters, �laments, and superclusters. According to standard theories, these
structures grew from small initial uctuations under the inuence of gravity. This, together with
possible biasing, resulted in the random point process represented by galaxies. Thus, statistical
methods can be applied e�ciently to galaxy surveys to constrain models of large scale structure
formation. Once the statistical tool is selected, two important questions inuence its applicability.
First, an optimal sampling strategy can be used to build a galaxy catalog (e.g. Kaiser 1986, hereafter
K86), thus maximizing the information content with respect to the statistics used. Second, an
optimal measurement method can be used to extract the maximum amount of information present
in the catalog. The aim of this work is to address both of these questions in a quantitative
way, focusing on low order moments of the probability distribution function (PDF) of the large
scale galaxy density �eld. To achieve these goals, a number of plausible, nevertheless important
assumptions were made, which are described next.
The galaxy distribution is assumed to be a discrete, locally Poissonian realization of an underlying

smooth random �eld. To estimate the moments of the PDF of this random �eld, factorial moments
(e.g. Szapudi & Szalay 1993a) of the count probability distribution function PN (`) (CPDF) are used.
By de�nition, the CPDF represents the probability of �nding N galaxies in a spherical (circular)
cell of radius ` thrown at random in a three-dimensional (two-dimensional) galaxy catalog. The
CPDF is easy to measure and widely used to test the scaling behavior of galaxy catalogs (see
e.g. Alimi, Blanchard & Schae�er 1990; Maurogordato, Schae�er & da Costa 1992; Szapudi, Szalay
& Boch�an 1992; Bouchet et al. 1993; Gazta~naga 1992, 1994; Szapudi, Meiksin & Nichol 1996,
Szapudi & Szalay 1997a) and N -body simulations data sets (see e.g. Bouchet, Schae�er & Davis
1991; Bouchet & Hernquist 1992; Baugh, Gazta~naga & Efstathiou 1995; Gazta~naga & Baugh 1995;
Colombi, Bouchet & Hernquist 1996).
Throughout this work, we assume an ideal three-dimensional magnitude limited galaxy catalog

E , of depth Rmax, with magnitude limit Mlim, covering a given volume V of the universe, and
containing a number Nobj of spherical coordinates of galaxies, (z; �; �), z being the measured
redshift.
A purely statistical approach is used: except for the e�ects of the selection function in a magni-

tude limited sample, all observational e�ects are ignored, such as extinction, confusion limit, and
systematic errors due to the imperfection of the instruments.
Redshifts are considered as pure distances, i.e. e�ects of projection in redshift space are neglected.

Such e�ects can signi�cantly change the behavior of the CPDF, especially in the nonlinear regime
(e.g. Kaiser 1987; Lahav et al. 1992; Matsubara & Suto 1995; Hivon et al. 1995).
Finally, it is assumed that the clustering of galaxies does not depend signi�cantly on their lumi-

nosity, which is probably a crude approximation. Indeed, there are both theoretical (e.g. White et
al. 1987; Mo & White 1996; Valls-Gabaud, Alimi & Blanchard 1989; Bernardeau & Schae�er 1992,
hereafter BeS) and observational arguments (e.g. Hamilton 1988; Davis et al. 1988; Dominguez-
Tenreiro & Martinez 1989; Benoist et al. 1996) suggesting that the level of clustering of galaxies
increases with their luminosity.
In realistic redshift surveys, the average number density of galaxies n(r) changes with the distance

r from the observer. The CPDF is traditionally de�ned in an homogeneous catalog, i.e. with
constant n(r). One way to bypass this problem is extraction of volume-limited subsamples E iVL of
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depth Ri � Rmax from the main catalog E (see for example Maurogordato et al. 1992; Bouchet
et al. 1993). In these subsamples, the objects are such that their apparent magnitude at distance
r = Ri would be larger than Mlim. Such a selection criterion renders the number density of galaxies
in the catalog independent of distance, at the price of signi�cant information loss. Although this can
be partially recovered by cutting several volume-limited catalogs with various values of Ri, it would
be preferable to extract all the available information from the catalog in a single measurement. This
is possible by de�ning an inhomogeneous counts-in-cells measure which is corrected for the variation
of n(r) with the distance from the observer, similarly to, e.g., Efstathiou et al. 1990 and Szapudi
& Szalay 1996. This, combined with a minimum variance weighting, results in unbiased, selection
corrected estimators of the N -th factorial moment of the galaxy counts. To clarify the substantial
gain from such an approach, we carefully calculate the errors on the measurements, and show how
our method minimizes them.
Only statistical errors are considered, caused by the fact that only a �nite part of the universe is

accessible for observations. The corresponding cosmic error was calculated by Szapudi & Colombi
(1996, hereafter SC) for count-in-cells measurements in an homogeneous catalog. The di�erent
contributions were classi�ed as follows:

1. The �nite volume error is due to uctuations of the underlying random �eld at wavelengths
larger than the size of the catalog. The �niteness of the sampled volume causes systematic
e�ects on the measurement of the CPDF and its moments, even in N -body simulations
(Colombi, Bouchet & Schae�er 1994, 1995, hereafter CBSI and CBSII).

2. Edge e�ects are related to the geometry of the catalog: the galaxies near the edges of the
catalog receive less statistical weight than those far from the boundaries. Edge e�ects can
be theoretically corrected for, at least partially. A corrected estimator can be used for the
two-point correlation function �(r) (see, e.g. Ripley 1988; Landy & Szalay 1992) from which
the variance of the PDF, �(`), can be obtained as a double integral of � over a cell of radius
`. A class of edge corrected estimators was actually recently introduced by Szapudi & Szalay
(1997b) for the higher order moments as well. They, however, use a somewhat complicated
procedure which is applicable only to the moments of uctuations.

3. The shot noise error (or, equivalently, the error from discreteness e�ects) is due to the incom-
plete sampling of the underlying smooth �eld with a �nite number of points. In particular,
excessive undersampling causes degeneracy of the CPDF, rendering the confrontation of var-
ious models against observations di�cult (e.g. Bouchet et al. 1993, CBSII). By de�nition,
discreteness e�ects tend to zero as the average number density of objects in the catalog
approaches in�nity1.

While unbiased estimators can be constructed in a number of ways, the above sources of errors
can be reduced by giving an appropriate statistical weight depending on the region in the catalog.
In a magnitude limited catalog for instance, density decreases far away from the observer, resulting
in an increase in the shot noise. This alone would call for increasing statistical weight close to
the observer, thus decreasing the contribution of distant portion of the survey. However, this
reduces the e�ective sampled volume, and increases the �nite volume and the edge contributions

1Note however that part of the shot noise belongs to the subclass of \edge-discreteness" e�ects, i.e. it is also an
edge e�ect, and can be corrected for with appropriate techniques (Szapudi & Szalay 1997b).
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to the error. There exists a \minimum variance" weighting which provides a compromise between
various e�ects. By deriving and solving the integral equation for the minimum variance weighting
scheme, we show that a signi�cant gain in accuracy on the measurement can be achieved with our
method, compared to the traditional volume-limited approach. Note that the word \optimal" is
used synonymously with minimum variance in this paper, i.e. producing the smallest error in a
class of unbiased estimators. Although this usage does not emphasize it, it is possible in principle
to �nd even better estimators by extending the class in which the search is performed.
While the above procedure can optimize the way information is retrieved from an existing survey,

calculation of cosmic errors helps in designing optimal surveys. In particular, an optimal sampling
strategy can be found to build a three dimensional galaxy catalog for a given statistical indicator.
Given the available telescope time, K86 found the optimal strategy for the measurement of the
two-point correlation function of galaxies, using a simple model for the cosmic error. To reduce
�nite volume and edge e�ects, which are independent of the number of objects in the catalog, a
sparse survey with large volume is needed. To reduce discreteness e�ects, on the other hand, a
catalog as dense as possible is preferable. These competing e�ects determine the optimal sampling
strategy with respect to a particular statistic. For the two-point function, K86 concluded in favor of
sparse samples with approximately 1=10 to 1=20 of the candidates randomly selected for measuring
their redshifts. Sparse sampling strategies were in fact used for several surveys, such as the Stromlo
APM redshift survey (e.g. Loveday et al. 1992), the QDOT redshift survey (e.g. Moore et al. 1994),
and the Durham/UKST redshift survey (e.g. Ratcli�e et al. 1997). However, the advent of multi-
�ber spectroscopy makes large, complete galaxy surveys possible in a signi�cantly shorter time than
when K86 proposed his idea. Prime examples are the Sloan Digital Sky Survey (SDSS, e.g. Loveday
1996), and the 2DF Survey (e.g. Lahav 1996). While the problem of optimal sampling strategies
might loose from its relevancy with these new developments, it is still worth to study it: either
to facilitate preliminary investigations to prepare large surveys, or optimize the design of surveys
aimed at statistical properties of rarer or harder to �nd objects at various wavelengths. Indeed,
it will be shown how sparse sampling strategies are relevant for measuring low order moments in
a reasonable scale range, while high order statistics, direct analysis of the CPDF shape, cluster
selection, etc., are highly sensitive to discreteness e�ects, therefore proving that full sampling is
more advantageous.
Another important design issue, when the catalog has poor sky coverage, is its geometry

(e.g. Kaiser 1996, hereafter K96). This a�ects �nite volume, edge, and shot noise e�ects in dif-
ferent ways. Although a general solution to this complicated problem will not be given, it will be
discussed in broad terms, with suggestions for reasonable design principles. The solution for the
conceptually simplest case will be given, which is relevant even for surveys which will eventually
cover a continuous portion of the sky. The results presented here can facilitate the extraction of
preliminary results before the catalog is �nished.
This article is organized as follows. x 2 introduces the statistical indicators used along this paper,

i.e. the weighted factorial moments corrected for selection e�ects. x 3 contains the calculation of
the general expression for the cosmic error, extending the results of SC to a magnitude limited
catalog with a spatial weight. The integral equation for the optimal weight is given. Some simple
but still quite general assumptions on the underlying statistics are made to enable the numerical
calculation of the optimal weight and the corresponding cosmic error. x 4 elaborates a practical
example: an SDSS-like catalog. In particular, a useful approximation for the optimal weight is
found. We emphasize the advantages of extracting the information from the data with the optimal
weight, compared to the traditional volume limited approach. In x 5, sparse sampling strategies are
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studied along with the suitable choice of geometry for the catalog. x 6 summarizes and discusses
the results. In addition, three Appendices provide further information. x A contains mathematical
details concerning the calculation of the cosmic error. x B explains and tests the numerical method
used to estimate the optimal weight. x C contains mathematical formulae used to derive analytical
expressions for the optimal sampling rate in some asymptotic regimes.

2. Weighted factorial moments corrected for selection e�ects

For a statistically homogeneous catalog, the CPDF PN is the probability of �nding N galaxies
in a cell of size `. The factorial moments of counts in cells are de�ned for k � 0 by

Fk(`) � h(N)ki �
X
N

(N)kPN ; (1)

where the falling factorials are de�ned as (N)k = N(N�1) : : :(N�k+1), and (N)0 � 1, therefore
F0 � 1. Under the assumption of in�nitesimal Poisson sampling (Peebles 1980) the factorial
moments correct directly for the discrete nature of galaxy catalogs. More precisely, their ensemble
averages are equal to the moments of the (appropriately normalized) underlying smooth density
�eld � (h�i = 1),

Fk = N
k
h�ki; (2)

where N � hNi = F1 is the average number of objects per cell (see Szapudi & Szalay 1993a).
Counts-in-cells statistics are estimated by a large number of sampling cells positioned at random

in the catalog. For a homogeneous survey, the corresponding estimator of the factorial moment is
expressed by the counts Ni in the ith cell, 1 � i � C,

~FC
k �

1

C

CX
i

(Ni)k : (3)

Equivalently, the CPDF can be estimated �rst (e.g. SC), which gives the above estimator through
equation (1). The form (3) is meaningful if all the cells are equivalent, i.e. if they all have the
same statistical weight ! = 1. In an attempt to correct for �nite volume and edge e�ects, a weight
!`;k(ri) (to be determined later) can be assigned to each cell i. This can depend on the position
and size of the cell, and the statistic at hand:

~FC
k �

1

C

CX
i

(Ni)k !`;k(ri): (4)

The weight !`;k is determined by minimizing the value of the cosmic error under the constraint of
appropriate normalization.
A magnitude limited catalog E , such as de�ned in introduction, is inhomogeneous since the selec-

tion function is not uniform. If n is the real number density of the underlying galaxy distribution
(assuming that such number is well de�ned), the e�ective number density n(r) of galaxies in a thin
shell at distance r from the observer reads

n(r) = n�(r); (5)
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where � is the selection function. In particular, the average number of galaxies in a cell of radius
` at distance r from the observer is given by

Nr = n`(r)v; v �
4

3
�`3; (6)

with
n`(r) = n�`(r); (7)

and �`(r) is the average of the selection function over a cell. The approximation �` ' � is excellent
for the relevant scales, valid within a few percents at worst. It will be used for practical calculations
throughout.
To correct for selection e�ects we follow Szapudi & Szalay (1996) by changing equation (4) in

~FC
k �

1

C

CX
i=1

(Ni)k !`;k(ri)

[�`(ri)]k
: (8)

This is the �nal form we propose for the estimator of the factorial moments. Note that a priori

knowledge of the selection function �(r) is assumed. Although implicitly always present, the k and
` dependence of the weights !`;k will be usually omitted. The normalization of the weights follows
from the requirement that the estimator is unbiased. Taking the ensemble average of the above
equation, and averaging all possible random realizations of C cells, gives

1

V̂ (`)

Z
V̂ (`)

d3r!(r) = 1; (9)

where V̂ (`) is the e�ective sampled volume, i:e: the volume occupied by the center of all possible
cells of radius ` contained in the catalog. While the proposed estimator can be used directly to
estimate the factorial moments, it might be advantageous to introduce the inhomogeneous CPDF,
PN (r). Once this is estimated, the inhomogeneous factorial moments Fk(r) can be calculated. Using
the scaling �(r)�k and summing over with the appropriate weights !(r) is identical to the proposed
estimator. This way, however, any high order moment can be calculated using the inhomogeneous
CPDF without the need of rescanning the whole catalog.

3. Cosmic error and optimal weight

This section generalizes the formalism for computing the cosmic error presented by SC to the case
of inhomogeneous selection function and weight. The equation for the optimal weight is derived in
x 3.1. The locally Poissonian and hierarchical assumptions are used to simplify the calculations in
x 3.2. A few comments follow on the interpretation of the results thus far (x 3.3), and, �nally, it is
shown how this formalism can be applied to practical measurements (x 3.4).

3.1. Formalism

The variance of ~FC
k is de�ned by

�
� ~Fk

�2
�
DD

~F 2
k

EE
C
�
DD

~Fk
EE2

C
; (10)
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where h i, and h iC are the ensemble average, and averaging over all possible sampling cells, re-
spectively (we dropped the C dependence of ~Fk). For the proposed estimator

DD
~F 2
k

EE
C
=

*
1

C2

CX
i=1

!2(ri)



(Ni)

2
k

�
[�(ri)]2k

+
C

+

*
1

C2

CX
i6=j

!(ri)!(rj)
h(Ni)k(Nj)ki

[�(ri)�(rj)]k

+
C

: (11)

Following SC, the evaluation of this expression in terms of the parameters of the distribution
is facilitated by generating functions. Let us introduce the generating function, Pr(x), of the
probability PN (r) of �nding N objects in a cell of size ` at position r, where the e�ective average
number density is n`(r):

Pr(x) �
1X

N=0

xNPN (r): (12)

Similarly, we de�ne Pri;rj (x; y) as the generating function of the bivariate probability PN;M(ri; rj)
of �nding N and M galaxies in cells of radius ` respectively at positions ri and rj :

Pri;rj
(x; y) �

1X
N;M=0

xNyMPN;M(ri; rj): (13)

As SC, we write formally

�
� ~Fk

�2
=

�
@

@x

�k � @
@y

�k
EC;V (x+ 1; y + 1)

�����
x=y=0

: (14)

The generating function of the total error, EC;V (x; y), is asymptotically the sum of two generating
functions

EC;V (x; y) =

�
1�

1

C

�
E1;V (x; y) + EC;1(x; y): (15)

Function E1;V (x; y) generates the errors for hypothetical surveys with �nite volume V and in�nite
number of sampling cells:

E1;V (x; y) =
1

V̂ 2

Z
V̂
d3r1d

3r2!(r1)!(r2)[�(r1)�(r2)]
�k fPr1;r2(x; y)� Pr1(x)Pr2(y)g : (16)

Function EC;1(x; y) generates the errors due the �nite number of sampling cells used to do the
measurement2:

EC;1(x; y) =
1

C

�
1

V̂

Z
V̂
d3r!2(r)[�(r)]�2kPr(xy)

�
1

V̂ 2

Z
V̂
d3r!(r)[�(r)]�kPr(x)

Z
V̂
d3r!(r)[�(r)]�kPr(y)

�
: (17)

Note that the generating function de�ned above can only be used for the error on the k-th order
moment, i.e. for each k a slightly di�erent generating function must be used. The reason for this is

2If the weight is homogeneous and if there are no selection e�ects (! = � = 1), as in SC, this function does not

depend on the survey volume. In that case, it generates the errors for hypothetical surveys with in�nite volume
(V =1) and �nite number C of sampling cells. This explains the formal notation \EC;1(x; y)".
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the implicit k dependence of the weight ! (the scaling with the selection function could be taken
into account simply with the substitution x! �x��+1). Although it would be possible to de�ne a
single but three variate generating function for all orders, it is simpler and more practical to use the
above de�nition. Also, for the sake of completeness, we quoted both the cosmic error E1;V (x; y),
and the measurement error EC;1(x; y). The former is an inherent property of the survey, while
the latter is related to the �nite number of sampling cells C used to do the measurement. Since
this contribution can be rendered arbitrarily small with massive \oversampling", C ! 1, or with
an algorithm corresponding to C =1 (Szapudi 1997) it will not be considered further (see SC for
a discussion on the \number of statistically independent cells", i.e. the number of cells needed to
extract all the relevant information from the catalog). In what follows, the upper indices will be
dropped from the cosmic error for simplicity, E = EC;V ' E1;V .
The above formalism provides the framework to compute the optimal sampling weight, which

minimizes the cosmic error on the measurement of ~Fk. Taking into account the normalization of
the weights leads to the following Lagrangian

L[!; �] �

�
@

@x

�k � @
@y

�k
E(x+ 1; y + 1)

�����
x=y=0

+ 2�

�
1

V̂

Z
V̂
d3r!(r)� 1

�
: (18)

The optimal weight ! is thus the solution of the following integral equation

1

V̂

Z
V̂
d3r!(r)[�(r)�(u)]�k

�
@

@x

�k � @
@y

�k
fPr;u(x+ 1; y + 1)� Pr(x+ 1)Pu(y + 1)g

�����
x=y=0

+ � = 0:

(19)
The constant � is determined by the normalization (9).

3.2. Approximations

To compute the optimal weight for measuring Fk and the corresponding cosmic error, generating
functions Pr;u(x; y) and Pr(x) are needed. More precisely, after partial di�erentiation of order k
at x = y = 0 in equations (14), the factors Fl;m(`; r;u) are needed, which are de�ned as

Fl;m(`; r;u) = h(N)l (M)mi (20)

up to order l+m = 2k. These quantities generalize the concept of factorial moments to bivariate
distributions (Szapudi et al. 1995). In equation (20), the ensemble average is taken over two cells of
size ` at positions r and u in the catalog, which can possibly overlap. This especially complicates
the problem of �nding the optimal weight for measuring Fk and the corresponding cosmic error.
Following SC, one can make reasonable assumptions about the underlying statistics to simplify

the calculations considerably: the hierarchical tree model, and the locally Poissonian approxima-
tion. Then, as shown below, only the factorial moments Fl, l � 2k and the two point-function �(r)
are required a priori for the computation of the optimal weight and the corresponding cosmic error
on Fk . The calculations are detailed in Appendix A. We summarize here the important steps and
hypotheses:

1. The integral (16) is split into two parts, according to whether or not the two cells overlap.
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2. The calculation of the non-overlapping part requires the knowledge of the bivariate count-
in-cells generating function for disjoint cells. Following SC, we simplify it by taking two
particular but still quite general cases of the hierarchical model (e.g. Peebles 1980, Balian &
Schae�er 1989, hereafter BS) by SS and BeS (see Appendix A for more details). The hierar-
chical model is seen to be a good approximation for the higher order statistics in the observed
galaxy distribution (e.g. Groth & Peebles 1977; Fry & Peebles 1978; Sharp, Bonometto &
Lucchin 1984; Szapudi et al. 1992; Meiksin, Szapudi & Szalay 1992; Szapudi et al. 1995;
Szapudi & Szalay 1997a) and in N -body simulations (e.g. Efstathiou et al. 1988; Bouchet et
al. 1991; Bouchet & Hernquist 1992; Fry, Melott & Shandarin 1993; Bromley 1994; Lucchin
et al. 1994; CBSI, CBSII; Colombi et al. 1996).

The function Pr1;r2
(x; y) is then Taylor-expanded to �rst order in �(r12)=�(`), where �(r) is

the two-point correlation function, r12 � jr1 � r2j and

�(`) �
1

v2

Z
v
d3r1d

3r2�(r12): (21)

This approximation is becoming more accurate when the cells are far away from each other,
however, it is still reasonable even when the cells touch each other (e.g. Bernardeau 1996).

3. To compute the overlapping contribution, the variations of the weight and of the selection
function are neglected within the cells. We also assume local Poisson behavior, which con-
siderably simpli�es the writing of the bivariate generating function of counts for overlapping
cells (see SC).

SC carried out explicitly the calculation to leading order in v=V for uniform survey and constant
weight. They found that the cosmic error could be separated into three contributions

�2[! = 1; � = 1] �

 
� ~Fk
Fk

!2

= �2
F +�2

E + �2
D: (22)

The term �2
F is the �nite volume error discussed in introduction, arising from the contribution

of disjoint cells in equation (16). It is proportional to the integral of the two-point function over
the sampled volume

�(L) �
1

V 2

Z
V
d3r1d

3r2�(r12) (23)

(L � V 1=3). While it depends on the clustering properties of the system, i.e.,

�2
F = FF

n
Fl=N

l
; l � 2k

o
�(L); (24)

it is independent of the average number density n [see eq. (2)]. Even if the number of objects in
the catalog increases, the �nite volume error remains unchanged.
Similarly, the edge error �2

E formally written as

�2
E = FE

n
Fl=N

l
; l � 2k

o
�v=V; (25)

is independent of average number density as well. Edge e�ects are caused by uneven weighting
near the edges of the catalogue, thus increasing with v=V .
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Finally, the discreteness (shot noise) error �2
D can formally be written as

�2
D = FD fFl; l � 2kg v=V: (26)

This is the only contribution to the cosmic error which depends on average number density n. To

leading order in N , it is proportional to N
�k
v=V thus becomes important at small scales or when

the number of objects Nobj in the catalog is small.
SC have tested successfully the validity of the above approximations by computing the cosmic

error in arti�cial galaxy catalogs generated by Rayleigh-L�evy random walks, for which the clustering
properties could be calculated exactly (e.g. CBSII).
When ! 6= 1 and �(r) � 1, equation (22) generalizes to (see Appendix A)

�2
cosmic[!; �] ' �2

F[!] + �2
E[!] + �2

D[!; �]; (27)

with

�2
F[!] =

�2
F

�(L)V̂ 2

Z
V̂
d3r1d

3r2!(r1)!(r2)�(r12); (28)

�2
E[!] =

�2
E

V̂

Z
V̂
d3r!2(r); (29)

�2
D[!; �] =

1

V̂

Z
V̂
d3r!2(r)�2

D(r): (30)

The r dependence of �2
D in the integral (30) is caused by the selection function, as this type of

error depends on the average count. On the other hand, the selection e�ects naturally canceled out
in the �nite volume and the edge errors, as expected.
The integral equation for the optimal weight becomes

�2
F

�(L)V̂

Z
V̂
d3u!(u)�(jr� uj) +

n
�2
E + �2

D(r)
o
!(r) + � = 0; (31)

and the constant � is determined by the normalization (9). This standard equation can be solved
numerically.

3.3. Interpretation

From equation (31), the following immediate conclusions can be drawn on how di�erent contri-
butions to the cosmic error inuence the optimal weight:

1. If edge e�ects were dominant, the optimal weight would simply be uniform. This is contrary
to intuition suggesting increasing weight at the edges to compensate for the lesser statistical
weight carried by these regions of the catalog. This is how edge e�ects are corrected for the
two-point function �(r) (e.g. Ripley 1988). The �nite extension of the cells, however, prevents
us from correcting for edge e�ects with our indicator (8), which uses a simple multiplicative
sampling weight. More involved additive correction for the moments of the uctuations of
counts in cells will be explained elsewhere using the formalism outlined in Szapudi & Szalay
1997b.
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2. If discreteness e�ects were dominant, the correct weight approximately would be

!(r) / 1=�2
D(r); (32)

in agreement with intuition. Indeed, the e�ective number density n(r) decreases with increas-
ing distance from the observer, thus the shot noise error increases as well. This is compensated
by ! decreasing with r.

3. Finite volume e�ects are di�cult to predict without explicit calculations. The correlation
function �(r) is expected to follow approximately a power-law behavior from observations
(Totsuji & Kihara 1969; Peebles 1974; Davis & Peebles 1983)

�(r) =

�
r

r0

��
; r0 ' 5 h�1 Mpc;  ' 1:8; (33)

for 0:1 h�1 Mpc �< r �< 10 h�1 Mpc. At larger scales it decreases rapidly with scale, becoming
negative at scales around � 30 � 100 h�1 Mpc (e.g. Fisher et al. 1994; Tucker et al. 1996),
although this turnaround value is presently uncertain. After that, it is expected to oscillate
slowly around zero with very small amplitude. With such a behavior, it is not obvious to
predict the optimal weight without explicit numerical calculations. The result will depend on
the size and the geometry of the catalog. The only simpli�cation is that if the �nite volume
error were dominant, the corresponding optimal weight would be independent of the order k.

3.4. Practical Measurements

As shown in x 3.2, even though it was considerably simpli�ed with reasonable hypotheses, the
calculation of the optimal weight and the cosmic error for Fk needs prior knowledge of Fl, l � 2k
(including Fk itself !) and of �(r) (and of course of the selection function). As a result, we propose
two procedures to perform a practical measurement in a galaxy catalog:

1. One possibility is to choose a model of large scale structure with given values of Fl, l � 2k
and �(r). These values are used as input parameters in equation (31) to compute the optimal
weight and the corresponding theoretical cosmic error [eq. (27)]. The value of Fk measured
with this weight can be compared to the theoretical one, given the theoretical cosmic error.
This procedure should be applied again to each competing model.

2. An alternative iterative approach starts with measuring directly the values of Fl, l � 2k in the
galaxy catalog, with a given weight, for example ! = 1. With these values of Fl, one would
solve equation (31) to �nd the optimal weight for measuring Fk , and thus perform a more
accurate measurement. This can be repeated until convergence is achieved. We conjecture
that a small number of iterations should be su�cient in practice. The main weakness of
this model independent approach is that there is a cosmic error on the determination of the
optimal weight itself. As discussed in SC (and earlier by CBSI and CBSII), the cosmic error
is likely to be systematic, which implies that the optimal weight estimated this way might be
biased. This bias, of course, would only increase the cosmic error on the measurement of Fk:
the estimator for the moments is still unbiased by de�nition.
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4. Example: the SDSS Catalog

The future SDSS will be a likely proving ground of the methods proposed in this paper. There-
fore a \SDSS-like" catalog, E , is used to illustrate the applicability of the theory outlined so far.
This section is organized as follows. x 4.1 presents the properties of the hypothetical survey consid-
ered, i.e., its luminosity function, geometry, and the underlying statistics (function �(r), factorial
moments Fk). Then, in x 4.2, the optimal weight is computed with the corresponding cosmic er-
ror. A simple approximation for !(r) is found which practically minimizes the cosmic error and
avoids solving numerically integral equation (31). Finally, in x 4.3, we show the advantages of our
optimal strategy of using the full catalog compared to the alternative of extracting volume limited
subsamples. Details on the method used to solve numerically equation (31) are given in Appendix
B.

4.1. Properties of the Survey

The luminosity function of the catalog E is assumed to be of the Schechter form (Schechter 1976)

'(L=L�) = ��(L=L�)
� exp(�L=L�); (34)

with parameters taken from Efstathiou, Ellis & Peterson (1988, see also Efstathiou 1996)

� = �1:07; �� = 0:0156h3 Mpc�3; (35)

where h represents the uncertainty of a factor two on the Hubble constant: H0 = 100 h km/s/Mpc.
In what follows, we shall use h = 0:5, i:e:

H0 = 50 km=s=Mpc: (36)

However, the results derived hereafter should not depend signi�cantly on the value of H0. In fact,
the Hubble constant inuences the shape of the power-spectrum of initial uctuations through the
parameter � = 
h2, where 
 is the density parameter of the universe (e.g. Efstathiou, Bond &
White 1992).
The average number density in a thin shell at distance r from the observer is

n(r) = ��� [�; Llim(r)=L�] ; (37)

where Llim(r) is the minimum required luminosity for a galaxy at distance r from the observer to
be included in the catalog, and � is the incomplete gamma function. If K-correction is neglected,

Llim(r)=L� = 100:4(M��Mlim+25+5 log10 r): (38)

In the above equation, r is expressed in Mpc. Our choice of M� and the magnitude limit Mlim is

M� = �19:68 + 5 log(H0=100); Mlim = 18:3: (39)

Note that, with the above value of �, n(r) diverges at r = 0, formally implying that the average
number density of the real, total galaxy distribution is in�nite. This, however, does not a�ect the
following calculations.
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For the geometry, we assume that the catalog covers a cone of depth

Rmax = 1200 Mpc (40)

with elliptic basis de�ned as follows in Cartesian coordinates:

z2 =

�
x

tan �M

�2
+

�
y

tan �m

�2
; (41)

�M = 65�; �m = 55�: (42)

With the above choice of the parameters the catalog would typically contain

Nobj ' 830000 (43)

objects.
The underlying statistics is chosen as follows:

1. The two-point correlation function is an estimate of the nonlinear matter autocorrelation
function for the standard Cold Dark Matter (CDM) model, which actually contains the H0

dependence of the subsequent calculations. It is computed by Fourier transform of the power-
spectrum obtained from the nonlinear ansatz of Peacock & Dodds (1994). The normalization
is chosen such that the variance in a sphere of radius 8 h�1 Mpc is unity. The choice of the
two-point function �xes its average over a cell � and therefore the factorial moment of order
2.

2. As the optimal weights for the measurement of Fk , k � 4 will be discussed, prior knowledge
of the statistics up to k = 8 is needed. Factorial moments Fk , 3 � k � 8 are derived from the
measurements of Gazta~naga (1994) of the coe�cients QN :

Q3 = 1:35; Q4 = 2:33; Q5 = 4:02; Q6 = 6:7; Q7 = 10; Q8 = 12: (44)

By de�nition,

QN �
1

�NvN

Z
v
d3r1 : : : d

3rN�N(r1; : : : ; rN ); (45)

where �N is the N -point correlation function (see e.g. Peebles 1980; BS) and

�N �
NN�2N

N
�
N�1

N !
: (46)

In general, QN can depend on scale. We assume that the hierarchical model applies, which
implies that QN = constant independent of scale. However, the cosmic errors should be fairly
robust against small variations of the cumulants.

The generating function of PN [eq. (12)] can be expressed as

P (x) = exp

"
1X

N=1

(x� 1)N�NQN

#
: (47)

This is a completely general equation, true outside of the hierarchical model framework as
well (BS; Szapudi & Szalay 1993a).

The factorial moments Fk can be computed from the coe�cients QN , N and � through
Fk = [@=@x]kP (x)jx=1 [see eq. (1)].

The volume limited subsamples E iVL extracted from our virtual catalog E are of depths Ri = 200,
400, 600, 800, 1000 and 1200 Mpc. Typically, they are expected to contain respectively Nobj;i '

40100, 138 500, 208 800, 211 800, 164 900 and 104 200 objects.

13



4.2. The optimal weight and the corresponding cosmic error

The assumed catalog has a non-spherical geometry similar to the future SDSS. Therefore the
weight should depend both on the angles and the distance from the observer r, except when the
�nite volume error contribution is negligible. For simplicity, however, only the radial direction will
be considered, i.e. the cosmic error will be minimized in the subspace of functions !(r). After
integration over the angles, the cosmic error becomes

�2
cosmic[!; �] '

�2
F

�(L)V̂ 2

Z R̂max

R̂min

Z R̂max

R̂min

r21dr1r
2
2dr2
̂(r1)!(r1)
̂(r2)!(r2)

~�(r1; r2)

+
�2
E

V̂

Z R̂max

R̂min

r2dr
̂(r)!2(r)

+
1

V̂

Z R̂max

R̂min

r2dr
̂(r)!2(r)�2
D(r); (48)

where 
̂(r) is the solid angle covered by cells at distance r from the observer, R̂min, R̂max denote
the distance of the closest and furthest cell to the observer, and

~�(r1; r2) �
1


̂(r1)
̂(r2)

Z

̂(r1)

Z

̂(r2)

sin �1d�1d'1 sin �2d�2d'2

��
�
[r21 + r22 � 2r1r2(cos('1 � '2) sin �1 sin �2 + cos �1 cos �2)]

1=2
�
: (49)

In equation (48), one can identify the three lines respectively as the �nite volume, the edge e�ect
and the shot noise contribution. The optimal radial weight is the solution of the following integral
equation (provided that a solution exists),

�2
F

�(L)V̂

Z R̂max

R̂min

u2du
̂(u)!(u)~�(r; u) +
n
�2
E + �2

D(r)
o
!(r) + � = 0: (50)

Figure 1 shows the optimal weight given by the numerical solution of equation (50) in various
situations (see Appendix B for details of the numerical method). The �nite volume error contribu-
tion is assumed to be dominant for this plot. In this case, the optimal weight is independent of the
statistical object under study, i.e., for Fk, of the order k. The long dashes correspond to a catalog
with similar characteristics as our SDSS-like catalog, but covering the full sky, in order to have the
exact solution !(r) only depending on r. The dots correspond to the same situation, but the two-
point correlation function is assumed to be �(`) = (`=16)�1:8 over all the available dynamic range,
with ` expressed in Mpc. The four continuous curves correspond to four volume limited catalogs
E iVL of our SDSS-like survey, of depths Ri = 200, 600, and 1000 and 1200 Mpc. The case Ri = 1200
Mpc is valid as well for the parent sample E . The discontinuities on the extremities of the curves
are boundary e�ects related to the way we discretize the integral equation (50). However, except
for the left extremity of the dotted curve, they are likely to express the fact numerically that the
optimal weight from �nite volume e�ects is singular at the edges of the survey, at least for the right
extremity of the dotted curve (see Appendix B.2). There are also some small irregularities on the
solid curves, but these are random uctuations due to the �nite number of steps in the Monte-Carlo
simulation used for computing the angular average (49) (see Appendixes B.1, B.2). Apart from
these details, we see that the optimal weight is a smooth function, close to unity. Actually, taking
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Fig. 1.| The optimal weight ! for measuring the factorial moment Fk(`) (k � 1) is plotted as
a function of distance R from the observer in the case the �nite volume error is dominant. The
results displayed here correspond to ` = 10 Mpc; other values of ` are similar. The solid curves
correspond to various volume limited subsamples E iVL extracted from our SDSS like catalog E (see
x 4.1). The depth Ri of the subsamples increases with the x-coordinate of the right end point of
the curves: respectively Ri = 200, 600, 1000 and 1200 Mpc. The latter case is valid for the parent
sample E as well. The dashed curve corresponds to a catalog exactly the same as E but covering
the full sky. The dotted curve is the same, but the two-point function is assumed to be a power-law
�(`) = (`=18)�1:8 over all the available dynamic range.

! = 1 gives almost the same value as the optimal weight for the �nite volume error, at least for
all the examples considered here. Thus a homogeneous weight ! = 1 approximately minimizes the
�nite volume error in the space of radial weights !(r). Rigorously, this result is not necessarily true
for a catalog with a complicated geometry. However, it should be valid if the catalog is compact
enough, which will be assumed in the following.
As a result, we propose the following approximation for the optimal weight, in the general case:

!(r) / 1
.h

�2
F +�2

E + �2
D(r)

i
: (51)

The coe�cient of proportionality is determined by the normalization (9). This approximation is
quite natural, because it properly takes into account the relative weight of each contribution to the
cosmic error. If one of them is dominant, then ! converges to the correct solution of the integral
equation (31), although only approximately if the �nite volume error is dominant.
Figure 2 shows the optimal (radial) weight obtained from the numerical solution of the integral

equation (50) (solid curve on each panel). Each line of panels corresponds to a given value of k,
which increases from top to bottom. Each column of panels corresponds to a �xed value of the
scale ` (from left to right, ` = 0:1 Mpc, 1 Mpc and 10 Mpc). The dashes and dots display the
case when the �nite volume error is negligible, and dominant, respectively. The long dashes show
approximation (51). They overlap surprisingly well with the solid curves.
Note that at large scales, the optimal weight tends to unity, because discreteness e�ects become

negligible, and edge e�ects dominant (e.g. SC). (The case of ` = 100 Mpc is not shown, since it is
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Fig. 2.| The optimal weight for measuring Fk in our virtual SDSS like catalog (see x 4.1) is plotted
as a function of the distance R from the observer (solid curves). Each panel corresponds to a choice
of (k; `). The order k increases from top to bottom and the scale from left to right. The dashed
curves are in the assumption that the �nite volume error is negligible, while the reverse is true for
the dotted curves. The long-dashed curves correspond to our proposed approximation (51) for the
optimal weight.
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quite similar to ` = 10 Mpc). The departure of ! from unity on the other hand increases at higher
order k, and smaller scales. Then discreteness e�ects tend to dominate the cosmic error (e.g. SC),
and, as discussed in x 3.3, the weight strongly (exponentially) decreases with r. These arguments
are partly illustrated by Figure 3. For each value of k, various contributions to the cosmic error
calculated from equation (48) using the optimal weight, are plotted as functions of scale. The solid,
dotted-dashed, and long dashed-short dashed lines correspond respectively to the cosmic error, the
�nite volume error, and the edge e�ect plus shot noise contribution.
In �gure 4, the cosmic error is displayed as a function of scale for all values of k. The solid lines

correspond to the result given by the optimal weight and the dots to ! = 1. There are also dotted-
dashed lines almost perfectly matching the solid ones: they correspond to approximation (51). The
degree of matching suggests that this is indeed an excellent approximation. Triangles, squares,
hexagons and circles respectively correspond to k = 1, 2, 3 and 4: the cosmic error increases with
the order k. According to the �gure, ! = 1 provides a satisfactory weighting scheme for our mock
SDSS catalog on scales larger than � 1 Mpc.

4.3. Volume limited subsamples versus full catalog

According to the above analysis, the choice ! = 1 approximately minimizes the �nite volume
error. As there is no selection e�ect in an homogeneous catalog, the discreteness error is minimized
as well with ! = 1; �nally, so is the edge e�ect contribution (x 3.3). This con�rms the common
wisdom, that the optimal weight in an homogeneous catalog is ! ' 1, be it volume limited or a
two-dimensional galaxy catalog.
In �gure 5, the cosmic error on the factorial moments is displayed as a function of scale for our

catalog E and its volume limited subsamples E iVL de�ned in end of x 4.1. From top to bottom, we
have k = 1, 2, 3 and 4. The solid lines correspond to E with optimal weight. The dots, dashes,
long dashes, dot-dashes, dot-long dashes and long dashes-short dashes correspond respectively to
Ri = 200, 400, 600, 800, 1000 and 1200 Mpc.
The �gure illustrates clearly that a measurement with optimal weights using the full catalog

yields smaller variance than any volume limited subsample (hereafter VLS). Small VLSs (with small
depth) are denser than large VLSs (with large depth), so the shot noise error is more signi�cant on
the latter than on the former. The opposite is true for the �nite volume error and the edge e�ect
error. Large VLS are thus suited only for probing large scales, while small VLS probe small scales,
especially at high order k. According to this argument, it is possible to construct a VLS which is
�ne tuned for a particular scale. At this scale, the cosmic error is almost (but not quite) as small as
the one obtained from the optimal weights from the full survey. However, this is not true for other
scales, i.e. the dynamic range is quite narrow. Therefore, a series of VLSs has to be constructed,
each optimized for a di�erent scale. As a result, the collection of VLSs can achieve almost as small
errorbars as the optimal measurement on the full catalog only at the expense of a lot more work.
In summary, a single optimal measurement yields smaller errorbars more e�ciently than a strategy
based on a series of VLSs.

5. Sparse sampling strategies

So far we dealt with the problem of extracting information from existing catalogs in an optimal
way. Another degree of freedom arises, during of the design of a survey. Next we will be concerned

17



Fig. 3.| The cosmic error is shown as a function of scale, when the factorial moments Fk are
measured with the optimal weight in our virtual SDSS like catalog E (see x 4.1). Each panel
corresponds to a value of the order k. The solid, dotted-dashed and long-dashed short-dashed
curves correspond respectively to the total error, the �nite volume, and the edge plus discreteness
e�ect contribution.

18



Fig. 4.| The cosmic error for our virtual SDSS like catalog E (see x 4.1) is shown as a function
of scale, when the factorial moments Fk are measured with the optimal weight (solid curves),
approximation (51) (dotted-dashed curves almost perfectly matching the continuous lines), and
uniform weights (dots). The triangles, squares, hexagons and circles respectively correspond to
k = 1, 2, 3 and 4.

with the optimal design, especially with the optimal use of the available telescope time. This in
turn inevitably leads to the issues of sparse sampling and optimal survey geometry. We discuss
them as follows:

1. In the spirit of K86 (see also the recent work of Heavens & Taylor 1997), we explore the
question: given a �xed amount of telescope time, how to build a statistically optimal three-
dimensional magnitude limited catalog, if one has the freedom to sample randomly a fraction
f � 1 of the visible galaxies? As mentioned in the introduction, a small sampling rate f
allows the construction of a deep but sparse survey. This results in small �nite volume and
edge errors, but large discreteness e�ects. The reverse is true when f is large. The best
compromise between these requirements yields the optimal sampling rate, which depends on
the scale considered and on the statistic. Here, we extend the calculations of K86 using a
more accurate estimate of the cosmic error. While originally only the two-point function was
considered, the optimal sampling rate will be calculated for higher order factorial moments,
Fk, k � 4. In x 5.1, to simplify the analysis, the survey is assumed to have full sky cov-
erage. The conclusions, however, do not depend signi�cantly on this assumption. We also
suppose that the redshifts are collected individually. In x 5.2, the changes brought by multi-
�ber spectroscopy are discussed, as today this is the most widespread method for collecting
redshifts.

2. Following K96, x 5.3 considers the question of optimal survey geometry. A survey is assumed
to cover a fraction of the sky with redshifts collected by multi�ber spectrographs. Thus the
catalog can be naturally decomposed into small patches corresponding to the �eld of view
of the telescope. The design goal is the optimal arrangement of these patches. Some of
the choices are compact, elongated (or VLA like), or quasi randomly spread over the sky.
This issue is immensely complicated by several non-linear factors and details of the actual
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Fig. 5.| The cosmic error is displayed as a function of scale for our virtual SDSS like catalog
E and various volume-limited subsamples E iVL (see x 4.1), as expected for factorial moments Fk
measured with the optimal weight. Each panel corresponds to a value of k, increasing from top to
bottom. The solid curves correspond to the parent sample E . The dots, short dashes, long dashes,
dot-dashes, dots-long dashes, short dashes-long dashes correspond respectively to the subsamples
of depth Ri = 200, 400, 600, 800, 1000 and 1200 Mpc. Note, that for Ri = 200 Mpc, there is a point
missing for ` = 100 Mpc, as a sphere of such radius is too large to be included in the subsample.
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parameters of the proposed survey. Accordingly, we only attempt to illustrate the problem,
and give an approximate solution under generic circumstances.

5.1. Full Sky Survey

Given the luminosity function of equation (34), and assuming, as in K86, that the time required
for measuring the redshift of a galaxy is inversely proportional to the luminosity L, the total
telescope time required for constructing a magnitude limited catalog is

Ttotal /

Z Rmax

0
r4dr���[�� 1; Llim(r)=L�]; (52)

where Rmax is the depth of the survey, and the redshifts are assumed to be collected individually.
The magnitude limit Mlim of the catalog is related to its depth Rmax through

Mlim = 5 log10

�
Rmax

Rref

�
+Mref ; (53)

where Rref and Mref are constants. This implies that

Ttotal / ��R
5
max; (54)

in agreement with K86. Thus sampling a fraction f of the galaxies for a �xed telescope time results
in

Rmax = Rreff
�1=5: (55)

Given a scale ` and a value of the order k, the optimal sampling rate f by de�nition minimizes the
cosmic error of the factorial moment Fk(`). Before any analytical estimates of the optimal sampling
rate, let us consider an example: a full-sky survey S(f), with luminosity function and statistics
identical to x 4.1. We choose

Mref = 15:5; Rref = 391 Mpc: (56)

For f = 1 this is roughly a full sky CfA2 catalog, although actually denser (see, e.g. de Lapparent,
Geller & Huchra 1989). On average it contains

Nobj(f = 1) � Nref ' 72400 (57)

galaxies.
For this hypothetical survey, the optimal sampling rate was found numerically by calculating the

cosmic error as explained in detail in Appendix B.3. Figure 6 shows the results for Fk , 1 � k � 4,
as a function of scale. The symbols (respectively triangles, squares, pentagons and hexagons for
k = 1, 2, 3 and 4) take into account e�ects of the selection function by using the approximation (51)
for the optimal weight !. The curves (respectively dots, short dashes, long dashes, dot-dashes for
k = 1, 2, 3 and 4) have an uniform selection function: they correspond to a homogeneous sample of
same size Rmax(f) and involving the same number of objectsNobj(f) as S(f). Apart from the small
shift for k = 1, the curves superpose quite well to the symbols, showing that such an approximation
is valid. This reduces signi�cantly the complexity of the calculation of the optimal sampling rate.
Note, however, that our choice of Rref [eq. (56)] was not arbitrary: Rref was chosen to be twice the
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Fig. 6.| The optimal sampling rate f for measuring the factorial moment of order k is shown
as a function of scale for our virtual survey S(f) (see text). The symbols use a realistic selection
function, whereas the curves assume uniform selection. The triangles (dots), squares (short dashes),
pentagons (long dashes) and hexagons (dot-dashes) correspond to k = 1, 2, 3, and 4, respectively.

radius of the volume-limited subsample which contains the largest number of objects (for f = 1).
The following scaling is thus true

Rref10
�0:2Mref = constant � Cref : (58)

With this choice of Rref , the sphere of radius Rmax(f) includes most of the detectable galaxies.
With a larger (smaller) value of Rref than given by equation (56), the curves on �gure 6 would be
shifted upwards (downwards).
Figure 7 shows the cosmic error on the measured factorial moments as a function of the sampling

rate f for various scales ` = 0:1, 1, 10 and 100 Mpc. The symbols are the same as in �gure 6.
Although it is an excellent approximation for determining the optimal sampling rate, a uniform
selection is inaccurate for estimating the cosmic error in general, except to some extent for k � 2,
and for large scales otherwise.
From �gure 6, the optimal sampling rate f exhibits a remarkable power-law behavior up to the

saturation to unity, except for k = 1, when it rapidly converges to a value smaller than unity
at small scales. Moreover, f increases with the order k, corresponding to the increasing relative
contribution of the discreteness error with k. These features can be further explained by analytical
calculations as follows.
According to the previous �ndings, calculations will be simpli�ed by assuming a uniform selection.

This appears to be good approximation for determining f . The analytical formulae of SC yield
the relative cosmic error on the measurement of Fk, k � 3. This can be used to �nd the optimal
sampling rate in the weakly and highly non-linear regimes. The details of the calculations can be
found in appendix C.
In the highly nonlinear regime, � � 1, i.e. at small scales, edge e�ects are expected to be negligible

compared to �nite volume e�ects (e.g. SC). The optimal sampling rate yields the best compromise
between discreteness and �nite volume e�ects. If Rref is su�ciently large, �(Rmax) is expected to
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Fig. 7.| The cosmic error on the measured factorial moment of order k is displayed, as a function
of the sampling rate f for our virtual survey S(f). Each panel corresponds to a given choice of
scale ` = 0:1, 1, 10 and 100 Mpc from top to bottom. As in �gure 6, the symbols use a realistic
selection function whereas the curves correspond to uniform selection.
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exhibit an approximate power-law behavior. For a Harrison-Zeldovich power-spectrum hj�kj
2i / k,

�(Rmax) ' (Rmax=L0)
�L ; L = 4: (59)

The power-law behavior of the average correlation function in the nonlinear regime is a good
approximation [eq. (33)], and, although not absolutely necessary, simpli�es the computations:

�(`) = (`=`0)
� ; ` �< `0: (60)

With the above hypotheses, the optimal weight, when not saturated to unity, is

f '

"
5k � 3

L

�Dk
�Fk

R
L+3(k�1)
ref

L
L
0

N�k
ref

`
(k�1)
0

# 5
5k+L�3

`
�

5(3�)(k�1)

5k+L�3 ; � � 1: (61)

In this expression, the quantities �Dk and �Fk are numbers depending on the order k and on Ql,
l � 2k. Their ratio writes, for k � 3,

�D1
�F1

= 1;
�D2
�F2

'
1

8Q4
;

�D3
�F3

'
Q3

47:4Q6
: (62)

Equation (61) is not valid for the Gaussian case, except for k = 1. Then f is independent of scale
when � � 1, explaining the result obtained for the triangles and the dots in �gure 6.
In the weakly nonlinear regime, � � 1, i.e. at large scales, edge e�ects typically dominate over

�nite volume e�ects (e.g. SC). Thus the optimal sampling rate f results from a competition between
edge e�ects and discreteness e�ects (see Appendix C for the details). At large scales, � is not a
power-law, (except for very large scales, ` �> 100 Mpc), neither is the optimal sampling rate

f =
2k2

3�Ek

R3
ref

Nref

1

�`3
; � � 1; (63)

where k2=�Ek is slowly increasing with k:

1

�E1
' 0:18;

4

�E2
' 0:23;

9

�E3
' 0:26: (64)

For  < 3 the optimal weight is a decreasing function of scale. It depends on the order k

considered, and, for nonlinear scales, on the details of the higher order statistics through the ratio
�Dk =�

F
k . However, it has a weak dependence on the total telescope time Ttotal according to the

following argument: Ttotal / R5
ref, Nref / R3

ref, therefore in the highly nonlinear regime [eq. (61)],

f / T

L�3

5k+L�3

total ; � � 1; (65)

constituting a weak dependence of the optimal sampling rate on the total observing time, at least for
k � 2. In the weakly nonlinear regime, � � 1, f does not depend at all on Ttotal. Consequently, the
results displayed in �gure 6 are more general than initially suspected: they should be roughly valid
for any full sky survey of depth larger than a few hundred Mpc (so that �(Rmax) is approximately
a power-law), to the extent that the assumptions we have made for the underlying statistical
properties (see x 4.1) are realistic.
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To give orders of magnitude, let us compute numerically what would be typically the optimal
sampling rate from formulae (61) and (63). Assuming H0 = 50 km/s/Mpc, a reasonable choice for
the correlation length in equation (59) is L0 ' 50 Mpc. The same values are taken as in equations
(56) and (57) for Rref and Nref. With  = 1:8, `0 = 16 Mpc and the values of QN quoted in
equation (44), from equation (61) the optimal weight fk is obtained corresponding to each value of
k in the highly nonlinear regime:

f1 � 0:05; (66)

f2 � min(1; 0:2`�0:55); (67)

f3 � min(1; 0:3`�0:75): (68)

Setting ` = 10 Mpc in equation (67) gives f2 � 1=18, in rough agreement with �gure 6. This result
is similar to the �ndings of K86. This is not surprising, although his calculation was done for rather
larger scales ` � 30 Mpc. In the weakly nonlinear regime, equation (63) must be used. For a CDM
spectrum normalized to COBE (�(16 Mpc) ' 1:222, see, e.g. Bunn & White (1997)) and ` = 100
Mpc, f2 � 1=135 would be optimal: a quite small sampling rate, in rough agreement with �gure 6.
More importantly, however, the sampling rate has to be optimized for range of scales and statis-

tics, not only for �xed values of k and `. The optimal sampling rate for (k; `) = (2; 100), f � 1=130,
is not optimal for other scales and orders: according to �gure 7 (symbols), it dramatically penalizes
small scales, especially when k is large: for k = 4 and ` = 1 Mpc, the error is about one order of
magnitude larger than for f = 1. Conversely, f ' 1 is a good choice for small scales, however it
would increase the errors on large scales by a factor of 2 � 3. A good compromise seems to be f
of order 1=10, in approximate agreement with the initial �ndings f = 1=20 of K86. This choice
unfortunately only optimizes for low-order statistics, k � 4. The higher is k, the higher should be
f . In particular, if one wants to analyze the probability distribution function of the density �eld
in terms of shape (e.g., Bouchet et al. 1993, CBSII), perform cluster selection (Szapudi & Szalay
1993a, Szapudi & Szalay 1996), or any other investigation which depends on the full hierarchy of
the factorial moments, a sparse sampling strategy seems inappropriate (as already stated in CB-
SII). In summary, although for low order moments a sampling rate f � 1 can be found, which
globally optimizes the measurement, higher order moments require full sampling. This conclusion
is further supported by the arguments of the next section, where it is shown that, with the advent
of multi�ber spectroscopy, there is more to be lost by undersampling than any possible gain.
Previously, we assumed that the telescope time tobs required to measure the redshift of a galaxy

of luminosity L was proportional to 1=L. This assumption probably breaks down for faint objects
when the background noise dominates. Then the scaling tobs / 1=L2, as used by Heavens & Taylor
(1997), would probably be more appropriate. Using this scaling does not signi�cantly change
the previous results and conclusions. The greatest di�erence is at large scales, where the optimal
sampling rate becomes at most twice as small compared to �gure 6, where tobs / 1=L was assumed3.
Note also that when tobs / 1=L2, assuming uniform selection is not seen to be a good approximation
anymore, thus analytical estimates similar to equations (61) and (63) are quite inaccurate.

5.2. Multi�ber spectroscopy

3This comparison supposes that the optimal sampling rate does not depend on total telescope time.
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The above calculation was assuming that the redshifts are collected individually. In today's
astronomy, the problem is complicated by the fact that multi�ber spectrographs are used to collect
redshifts. With this technique it is possible to measure simultaneously NS redshifts in a patch of
the sky of �xed angular size 
S. This limits the validity of the previous calculations to the case
when the typical number of candidates in such a �eld, Ncan / f2=5, is larger than NS, as already
discussed in K864.
Even if the available telescope time is too short to allow Ncan �> NS, a sparse sampling strategy

still can make sense. It is possible to spend more time per �eld in order to go deeper, and thus
allow a smaller value of f . There is a price to pay for such strategy: if Ttotal is �xed, the total solid
angle 
 covered by the survey will be reduced. More details of this argument can be found in K86.
Here let us only remind the scaling of the relevant quantities with the sampling rate, such as the
depth Rmax of the catalog, its solid angle 
 and its volume V = 
R3

max=3:

Rmax = Rreff
�1=3; 
 = 
reff

2=3; V = Vreff
�1=3: (69)

Similarly to K86, we are going to see how these new relations a�ect the optimal sampling rate,
compared to x 5.1. Just as before, uniform selection will be assumed, because it was shown that the
details of the selection function do not inuence the results. Unfortunately, the varying shape of the
catalog renders the calculation of the �nite volume error costly: for each value of f , 
 changes, and
a new calculation of the two-point correlation matrix ~�(r1; r2) is required [eq. (49)]. This would go
beyond the scope of this paper. Instead the �nite volume error is simply calculated for a spherical
catalog of same volume V . This is a reasonable approximation if the catalog is compact enough,
although it would obviously fail for the extreme case of a pencil beam survey. We shall partly come
back to that problem in x 5.3.
Similarly to x 5.2, and after the calculations detailed in Appendix C, the result in the highly

nonlinear regime is

f '

"
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�Dk
�Fk

L
L+3(k�1)
ref

L
L
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N�k
ref

`
(k�1)
0
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`
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9(3�)(k�1)

9k+L�3 ; � � 1; (70)

where the typical size Lref of the catalog is de�ned as

Vref �
4�

3
L3
ref : (71)

In the weakly nonlinear regime, � � 1, the edge e�ects are likely to dominate over �nite volume
e�ects. To leading order in v=V the solution is insensitive to the shape of the catalog, although as
shown in x 5.3, this is not true in extreme cases. The optimal sampling rate is

f =
2k2

�Ek

L3
ref

Nref

1

�`3
; � � 1: (72)

Equations (70) and (72) are quite similar to eqs. (61) and (63) in x 5.1. For example, in the
weakly nonlinear regime, the optimal sampling rate is roughly three times larger for multi�ber

4By taking into account the galaxy density uctuations from patch to patch over the sky, a more realistic constraint

would be Ncan[1�
p

1=Ncan + w(
S)]
�
> NS, where w(
S) is the average of the angular correlation function over the

patch. This condition accounts for the expected Poisson uctuations and intrinsic correlations of the density �eld,
up to second order.
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spectroscopy, than in x 5.1 (instead of the factor two of K86). In the highly nonlinear regime, the
di�erence is apparently smaller, although this is probably partly due to our way of estimating the
�nite volume error, and changes slowly with scale. For multi�ber spectroscopy, f is typically twice
than for individual collection of redshifts for k = 1, 30% more for k = 2 and 20% more for k = 3.
In the weakly nonlinear regime, our estimate of the cosmic error is accurate enough to compute
the gain on the errors for optimal compared to full sampling, even though uniform selection was
used (see lower-panel of Fig. 7). For a CDM spectrum normalized to COBE at ` = 100 Mpc
with the corresponding optimal sampling rate f2 � 1=45, the gain is merely 1:5 in reduction of
�F2=F2. This is to be compared with 2:8 for individual redshifts. These results qualitatively agree
with K86: the optimal sampling rate is increased with multiple collection of redshifts compared to
individual collection, and the corresponding gain in the cosmic error is smaller. This strengthens
the conclusions of x 5.1: even if a sparse sampling strategy could be optimal for special applications,
such as measuring low-order statistics, the resulting gain is too small compared to the corresponding
increase of errors for high order statistics which are more sensitive to sampling. Another important
point to note is that sparse sampling strategy consists of measuring deeper redshifts, thus less
controllable systematic errors are also likely to increase, which are not included in the previous
discussions.

5.3. Survey geometry

So far we neglected the dependence of the cosmic error and the corresponding optimal sampling
rate f on catalog geometry: this amounts to replacing the geometry with a sphere of same volume.
For a deep catalog covering only a small part of the sky, such as a pencil beam survey, this is clearly
not a good approximation. The �nite volume error depends signi�cantly on the catalog geometry.
So does the shot noise error5, and particularly the edge e�ect error, especially when the cell size
becomes comparable to the size of the largest cell contained in the catalog. This did not show up
in our calculations to leading order in v=V : in that case, the edge e�ect and the shot noise errors
do not depend on the catalog geometry.
Since geometry is another degree of freedom in the design of surveys, it can be used to achieve

predetermined statistical goals. For typical redshift surveys, the geometry has an \atomic" building
block, 
S, corresponding to the �eld of view of the telescope. Within this, a certain number of
spectra can be collected. The design problem which will be discussed in this section is (K96): what
is the optimal distribution of �elds of size 
S on the sky? Note that this problem is relevant even
to redshift surveys, which, as the SDSS, plan to uniformly cover a large portion of the sky. Since
such a survey takes a long time to carry out, it is important that in the initial phases the individual
�elds should be placed in such a manner that as much preliminary information as possible could
be extracted. Such strategy can not only provide preliminary results before the full completion of
the survey, but it gives an excellent early check, whether the envisioned goals of the survey can be
achieved when completed. Note that in such a case, the design problem acquires another dimension,
i.e. time, since analysis can be performed at several stages before full completion. Generalization of
the following arguments for this is trivial. Some of the possibilities for the geometry are a compact
structure, an elongated one (perhaps VLA-like), or a (quasi) random distribution, etc. Judging

5through \edge-discreteness" e�ects as mentioned in the introduction.
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all possibilities is extremely di�cult, not to mention that for realistic surveys other \worldly"
factors play important roles, such as weather, dark time, season, etc., therefore the aim is here
only to illustrate the problem and present some practical suggestions by solving it under simpli�ed
circumstances.
Each �eld corresponds to an elementary galaxy catalog of volume VS = 
SR

3
max=3 at position

n̂i in the sky. The centrally important quantity for the �nite volume error, the integral of the
two-point function over the whole survey can be decomposed as

�(L) =
1

M2
S

X
i6=j

w(�ij) +
1

MS
�(LS): (73)

In this equation, MS is the total number of �elds. The angular correlation function w(�) is de�ned
by

w(�) �
1

V 2
S

Z
d3r1

Z
d3r2�(r12); (74)

where each integral is performed on disjoint elementary catalogs with positions n̂1 and n̂2 on the
sky such that � = (n̂1; n̂2). The quantity �(LS) is the average of � over an elementary catalog:

�(LS) �
1

VS

Z
VS

d3r1d
3r2�(r12): (75)

According to equation (73), values of �ij could be chosen, which minimize �(L) and therefore the
�nite volume error. This choice would not a�ect the edge e�ect error and the shot noise error
signi�cantly: they do not depend on the geometry of the catalog to leading order in v=V , i.e. at
small scales. Although the solution depends on the large scale behavior of the two-point function,
we conjecture the best con�guration to be a \glass" spread over the largest possible area of the
sky. This con�guration would maximize the distance between the �elds, and, in agreement with
intuition, it would decrease the coherence of the �elds as much as possible. Clearly, the \compact"
con�guration is the worst, followed by the \line" con�guration. These conclusions are very similar
to K96, who discussed optimal survey strategies for measuring weak lensing related two-point
statistics in Fourier space.
However, the above arguments are relevant only if the considered scale ` is small compared to

the size `max of the largest cell included in the catalog. When ` becomes comparable to `max,
our calculations of the full cosmic error are not valid anymore, although the conclusion remain
approximately valid for the �nite volume error. The exact calculation of the cosmic error in the
regime where ` �< `max is quite tedious (see appendix B of SC for an example). Qualitative
description, however, can be given. The shot noise error and the edge e�ect error increase with
v=V̂ , where V̂ is the volume occupied by positions of cells included in the catalog. This ratio
increases toward larger scales both because v is increasing and V̂ decreasing. This latter e�ect is
obviously more prominent for \glass" , or \line" con�gurations. The edge e�ect error (and the
shot noise error) is therefore more important at large scales for these con�gurations, than for the
compact geometry.
As before, the choice of the optimal geometry of the catalog results from the competition between

various contributions to the cosmic error, namely the �nite volume error against the edge e�ect
and the shot noise errors. The details of the sampling strategy depend on the value of 
S, on
total telescope time, the needed dynamic range in scales, the statistical aim, and the clustering
properties of the universe. A good compromise could be a survey composed of several compact
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subsamples of size 
F � 
S, spread over a large fraction of the sky on a glass like structure. The
optimal value of 
F is a complicated function of the various parameters of the survey. While the
details of this di�cult issue are left for subsequent research, it is clear that the above arguments
give an approximate solution once the survey parameters and the scale range are �xed.

6. Discussion

In this article, we examined extensively the measurement of low-order moments of the count
probability distribution function (CPDF) in three-dimensional magnitude limited galaxy catalogs,
with special emphasis on issues related to the e�ects of the selection function. A new estimator was
proposed: the weighted factorial moment of count-in-cells, corrected for selection e�ects [eq. (8)].
The following questions were studied in detail:

(i) Given a catalog, what is the optimal way of measuring factorial moments?

(ii) What is the optimal sampling strategy for constructing a catalog to measure factorial mo-
ments?

Both of these question are intimately related to the variance of the proposed unbiased estimator.
Thus the cosmic error was computed, by extending the calculations of Szapudi & Colombi (1996,
SC) for the new estimator which includes a local statistical weight, and for a general selection
function. Similarly to SC, the hierarchical model and local Poisson behavior was used to simplify
the calculations. The local (but not the global) variations of the selection function were neglected
as well. This allowed for the �rst time the accurate estimation of the optimal weight, i.e. the one
which minimizes the cosmic error [eqs. (27) to (31)].
To illustrate numerically the �rst question (i), a virtual SDSS-like catalog was considered. For

this, we demonstrated the advantages of our new estimator, which extracts all the relevant infor-
mation from the catalog at once. This method not only yields higher accuracy in a wider dynamic
range than the more traditional volume limited method, but it is signi�cantly more e�cient as well.
As an added bene�t, our calculation of the cosmic error �nds the best volume limited strategy if
other reasons necessitate its use. A remarkably simple expression for the optimal weight ! was
found, which provides an excellent approximation to the solution of the corresponding integral
equation

!(r) / 1
.h

�2
F +�2

E + �2
D(r)

i
; (76)

where �2
F, �

2
E and �2

D(r) are respectively the �nite volume, the edge e�ect and the discreteness
errors. As a result, the optimal weight for an homogeneous sample, i.e. with uniform selection
function, is very well approximated by ! = 1. Unlike N -point correlation functions, it is impossible
to correct for edge e�ects with our estimator, due to the �nite extension of the smoothing kernel.
A di�erent approach, however, is presented elsewhere (Szapudi & Szalay 1997b).
Interestingly, it appears that ! = 1 is a good approximation for the optimal weight in the SDSS

catalog, at scales larger than � 1 Mpc. As illustrated by �gure 4, the corresponding cosmic error
on the estimates of h�ki should be rather small, of order 1 � 2% for k = 2, 3 � 5% for k = 3 and
5�10% for k = 4. These results, however, depend on the details of the model we used for clustering
properties of the universe.
Note the similarity of our results with those of Feldman, Kaiser & Peacock (1994, hereafter

FKP), who did similar calculations for �nding the optimal weight to measure the power-spectrum
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P (k) � hj�kj
2i, where �k is the Fourier transform of the density contrast � = �� 1. They assume

that the modes are normally distributed in Fourier space and consider modes corresponding to
scales small compared to the size of the catalog. Their result is

!(r) /
1

1=n(r) + P (k)
; (77)

in excellent agreement with equation (76). Indeed, from equation (77), the optimal weight presents
a plateau at small r and decreases exponentially at large r. The same conclusions apply as well if we
compare our optimal weight to the one obtained for measuring optimally the two-point correlation
function �(r) (e.g., Efstathiou 1996; Hamilton 1997a).
To address question (ii), we considered the sparse sampling strategy proposed by Kaiser (1986,

K86, see also Heavens & Taylor 1997). This consist of randomly sampling a fraction f of the
visible candidates to build a three dimensional catalog. The optimal sampling rate f minimizes
the cosmic error, when the total available telescope time is �xed. A small sampling rate f results
in a sparse but deep catalog, therefore decreasing the �nite volume and the edge e�ects. Then
discreteness error becomes the limiting factor. The reverse is true for high sampling rate. To
measure factorial moments up to order four in a reasonable range of scales such as 1 Mpc �< ` �< 100
Mpc, f = 1=10� 1=3 yields a good compromise between the above e�ects, depending whether the
redshifts are collected individually, or, as usual today, collectively. This is in qualitative agreement
with K86, although slightly larger for the following reasons: our calculation of the cosmic error
is more realistic; we consider higher order (4 vs. 2) statistics than K86; we emphasize dynamic
range from small scales to large scales, the latter being solely considered by K86. Note that the
optimal sampling rate increases with the order k of the statistic considered and decreases with
scale6 Therefore, when properties sensitive to higher than fourth order are considered, such as the
CPDF shape in the nonlinear regime, cluster selection, higher, most likely full sampling will be
optimal (Colombi et al. 1995, Szapudi & Szalay 1996), all the more since we have shown that a
sparse sampling strategy yields only a marginal gain compared to full sampling even at the largest
scales.
Finally, the design of optimal geometry for a galaxy survey covering some fraction of the sky

(e.g. Kaiser 1996, K96) was considered. This is an important problem even for surveys eventually
covering a large, continuous portion of the sky, since early results can be obtained by the appro-
priate (evolving) geometry. Again, the design is governed by the competition between edge and
discreteness e�ects, requiring compactness at large scales, and �nite volume e�ects, requiring large
sky coverage. For a reasonably deep survey, where the �nite volume error is expected to be quite
small, the compact geometry is probably the best choice, because it allows the largest possible scale
range for the measurement of the moments. A glass like con�guration, where the survey is spread
out over the sky in pencils beam subsamples, would reduce the �nite volume error. It would be,
however, suboptimal for edge e�ects at large scales, thus constraining the dynamic range of the
measurement. A possible compromise is to increase the size of each subsample, for compactness,
and still spread them over the sky in a quasi random glass like structure, for reducing the �nite
volume e�ects. The details of such a construction, however, depend so much on the goals of the
survey in terms of scale range, desired statistics, and predetermined conditions as well, such as the

6Except for very large scale `
�
> a few hundred Mpc. In this regime, one expects � / `�4 [eq. (59)] implying f / `

[eqs. (63), (72)], in agreement with the calculations of Heavens & Taylor (1997) concerning the power-spectrum.
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�eld of view of the telescope, the number of �bers of the multi�ber spectrograph, and �nally on the
statistics of clustering in the universe, that we only attempted to illustrate the problem by solving
it for the conceptually simplest cases.
While the calculation presented in this work provides su�cient details for most practical appli-

cations, there are several points where generalization or extension could provide more accuracy, if
needed:

1. We did not investigate the dependence of the results on the details of the clustering in the
universe, since a particular model was assumed to illustrate our method (see x 4.1). As shown
by SC, the cosmic error on statistics of order k depends on statistics of order l � 2k. The
dependence becomes stronger at small scales, possibly altering the optimal weight !. At
very large scales, where the non-Gaussianity is less important, the results are only weakly
sensitive to higher order statistics. At the level of approximation used in this paper, however,
our qualitative results both on optimal weight and sampling rate are expected to be valid for
a broad spectrum of realistic statistics. Extended perturbation theory (Colombi et al. 1997)
can be used to estimate the sensitivity of the results within reasonable limits. An overall
ampli�cation for the optimal sampling rate of a factor 4 is predicted for the variance at
nonlinear scales when one passes from an e�ective spectral index ne� = �9 to ne� = �1
(corresponding respectively to scale-free initial conditions hj�2kji / knlinear with nlinear = �2
and nlinear = 0). The calculations in this paper correspond to an intermediate value ne� � �3
(corresponding to nlinear = �1), which is most supported by observations.

2. So far, we employed the hierarchical tree model as an approximation to simplify the cal-
culations of the cosmic error. Another possibility is to use tree-level perturbation theory
predictions (see, e.g. Bernardeau 1994, 1996), which are seen from N -body simulations to
be valid in the regime � �< 1 (e.g., Juszkiewicz, Bouchet & Colombi 1993; Bernardeau 1994;
Baugh et al. 1995; Gazta~naga & Baugh 1995; Colombi et al. 1996, 1997). The use of perturba-
tion theory predictions for computing the cosmic error will be presented elsewhere (Szapudi,
Bernardeau & Colombi, 1997).

3. As mentioned in the introduction, redshift distortion was completely disregarded, although
it a�ects the measured statistics in two di�erent ways, depending on the scaling regime
considered. At large scales, coherent ows enhance the density contrast along the line of
sight, therefore increasing the amplitude of the N -point correlation functions. At small
scales, on the contrary, the \�nger of god" e�ect by the high velocity dispersion of large
clusters tends to smear out clustering and reduce the amplitude of the N -point correlation
functions. The net e�ect on the parameters QN is a decrease at small scales and no change
at large scales (e.g. Matsubara & Suto 1994; Hivon et al. 1995). One consequence is that,
at variance with what is expected from real space measurements in N -body simulations,
function QN(`) is fairly at in redshift space. As a result, the hierarchical model used along
this paper appears to be an even better approximation for estimating the cosmic error in
redshift surveys. However, a correction for redshift distortions would be needed to transform
the measured moments into con�guration space, which is left for future work.

4. Possible dependence of the clustering on luminosity, and morphology was neglected as well. If
clustering of galaxies increased with their luminosity (as some observations might indicate),
magnitude limited surveys would have inhomogeneous clustering properties. Indeed, only
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bright objects are seen deep in the catalog, thus clustering would change with depth implying
a systematically increasing bias with distance from the observer. In that case, our estimator
[eq. (8)] would have to be corrected for this bias, otherwise the volume limited approach is the
only alternative. In fact, if the bias is unknown a priori, the volume limited approach provides
a way to estimate it. Using an already existing formalism (e.g. Bernardeau & Schae�er 1992),
one can probably directly include the e�ects of biasing in the calculation of the cosmic error,
but this is left for future work. A similar e�ect is caused by the change of clustering with z

in a very deep catalog (Suto 1997).

5. It is worth to emphasize again, that our purely statistical approach cannot account for sys-
tematic observational errors, introduced by the instruments, uneven sky, seeing, emission
from our own galaxy, inappropriate K-corrections, problems with star galaxy separation, in-
accuracy of redshifts, etc. It is only hope, that in a well controlled sample, these e�ects do
not constitute the dominant source of error, or, turning it around, this condition yields well
de�ned accuracy goals for observations.

6. There are known alternatives over constructing an estimator ~Fk from the CPDF. For instance,
for many applications, the connected moments, or cumulants SN (or, equivalently QN =
SN=N

N�2) are desirable. These numbers are ratios of combinations of factorial moments (for
example S3 = h�3i=h�2i2). Kim & Strauss (1997) proposed an alternate method to measure
SN in galaxy catalogs, by �tting the Edgeworth expansion (e.g. Juszkiewicz et al. 1995)
convolved with a Poissonian to the measured CPDF. They claim that this method, less
sensitive to the tails of the CPDF, is more robust than the traditional moment method which
was re�ned in this paper. However, their error estimation is quite ad-hoc, even if normalized
withN -body simulations. Moreover, their method is valid only in the weakly nonlinear regime
� �< 1, and, in its present form, can be applied only to volume limited catalogs, in contrast

with our indicator ~Fk .

7. The CPDF depends on the full hierarchy of factorial moments. In a �nite galaxy catalog,
however, only a limited amount of information is available, due to the cosmic error and
other sources of noise. Thus data compression must be possible without loosing signi�cant
information. For example, information content in the tails of the measured CPDF is small
because of large uctuations associated to rare events (e.g., Colombi et al. 1994). Data
compression is already used for applying maximum likelihood tests to the galaxy distribution
and the cosmic microwave background (e.g., Bond 1995; Vogeley & Szalay 1996; Tegmark,
Taylor & Heavens 1996; Ja�e, Knox & Bond 1997). For counts-in-cells statistics, such a
compression is complicated by the non-Gaussanity of the likelihood function at small and
intermediate scales (e.g. SC).

8. Furthermore, the estimators ~Fk are not statistically independent (i.e. h ~Fk ~Fk0i 6= FkFk0 if
k 6= k0, h ~Fk ~Fk0 ~Fk00i 6= FkFk0Fk00 , k 6= k0 6= k00, etc.), therefore they do not provide independent
tests of theoretical models. An ensemble of statistically independent estimators, but as close
as possible to the objects one wants to study to facilitate the physical interpretation of the
measurements (in this paper, the moments of the galaxy distribution), would provide much
stronger constraints on the models. Such approach is used for measuring the power-spectrum
of the galaxy distribution and of the cosmic microwave background (e.g., Hamilton 1997b;
Knox, Bond & Ja�e 1997; Tegmark & Hamilton 1997). As before, non-Gaussanity makes the
construction of such a hierarchy of estimators di�cult.
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This paper constitutes the second step in a major investigation on the theoretical errors on
counts in cells. SC laid the groundwork for all subsequent calculations, and here, their formalism
was extended and applied for magnitude limited redshift surveys with realistic selection function.
We proposed a new set of estimators for the factorial moments, which includes compensation for
the e�ects of the selection function and a minimum variance weighting. The integral equation for
this weight was solved, an excellent approximation found, as well as the corresponding errors were
calculated. Optimal sparse sampling strategies were considered as well, and it was shown that
in most cases the decrease in variance does not outweigh the disadvantages of the corresponding
information loss. Therefore full sampling is advocated for most applications requiring high order
statistics. Finally, the question of optimal survey geometry was addressed, and we found that quasi
random distribution of �elds is a reasonable choice, when a small fraction of the sky is covered by
the survey.
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Appendix

A. Calculation of the Cosmic Error

This section generalizes the calculation of the cosmic error by SC to the case of a non-uniform
selection function, and for our estimator which includes local (spatial) statistical weight.
Following CBSII and SC, equation (16) is separated into two parts, according to whether the

cells overlap or not
E = Eoverlap+ Edisjoint; (A1)

with

Eoverlap �
1

V̂

Z
r12�2`

d3r1d
3r2 : : : ; (A2)

Edisjoint �
1

V̂

Z
r12�2`

d3r1d
3r2 : : : ; (A3)

and r12 � jr1 � r2j. Except when speci�ed, we assume that the cell size is small compared to the
survey size. Our calculations will thus be valid at leading order in v=V .

A.1. Contribution from Disjoint Cells

The contribution to the error from disjoint cells corresponds to �nite volume e�ects. It requires
the knowledge of the generating function Pr1;r2(x; y) of the bivariate counts in disjoint cells at
positions r1 and r2. The problem is that the average number density of galaxies depends here on
the distance r from the observer. According to the the reasoning of Szapudi & Szalay (1993a) in
terms of Poisson processes [see, e.g., their eq. (5.2)],

Pr1;r2
(x; y) = exp

8<
:
X
N;M

(x� 1)N(y � 1)MN
N
r1
N

M
r2

N !M !vN+M
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Z
v1

d3u1 : : :d
3uN

Z
v2

d3uN+1 : : :d
3uN+M�N+M (u1; : : : ;uN+M)

�
; (A4)

where Nr is the average number of objects per cell expected at position r [eq. (6)]. There are
two approximations in SC which are used for the bivariate generating function; We refer to SC for
details about the underlying hypotheses in these approximations, which are particular cases of the
hierarchical model (e.g. Peebles 1980, BS), and for those it is trivial to take into account the above
supplementary dependence of the average densities Nr1 and N r2 on distance from the observer.
The �rst approximation, hereafter SS, was derived by Szapudi & Szalay (1993a, 1993b). It assumes

that the integral in equation (A4) can be well approximated as N
N
r1
N

M
r2
QN+M�N (r1)�M (r2)NM�

up to linear order in �=�. The r dependence (through N) of quantity �N [de�ned by eq. (46)] is
now explicitly written, thus

Pr1;r2
(x; y) ' Pr1(x)Pr2(y)[1 +Rr1;r2(x; y)] +O(�

2=�
2
); (A5)

Rr1;r2(x; y) = �

1X
M; N=1

(x� 1)N(y � 1)MQN+M�M (r1)�N (r2)NM; (A6)

where � = �(r12). The second approximation, hereafter BeS, was proposed by Bernardeau &
Schae�er (1992). It is

Rr1;r2(x; y) = �
n
(1� x)N(r1)�

o
�
n
(1� y)N(r2)�

o
�=�

2
; (A7)

where

�(s) = s

vuut2
X
N�2

(�s)N�2QN
NN�2(N � 1)

N !
: (A8)

It was noted by SC that the two approximations SS and BeS, although quite di�erent formally, give
practically identical results for the cosmic error on the factorial moments in realistic cases. Also,
as shown by SC, in the case of a sample without selection e�ects and with homogeneous weighting
(� = ! = 1), the relative �nite volume error on Fk does not depend on N , neither on the average
density. This means, as shown later, that in the more general case �(r) � 1, all �-dependent terms
disappear in the �nal expression for the �nite volume error on Fk.

A.2. Contribution from Overlapping Cells

The overlapping contribution is discussed under the assumption that the variations of �(r) and
!(r) are small across the length 2`. This is a reasonable approximation when the cell size ` is small
enough. With the additional assumption of local Poisson behavior (SC)

Eoverlap(x; y) '
1

V̂

Z
V̂
d3r!2(r)[�(r)]�2k E�=!=1

overlap (x; y)
���
N=Nr

; (A9)

where the quantity E�=!=1
overlap (x; y) is the overlapping contribution to the generating function of the

cosmic error computed by SC when there are no selection e�ects and the weighting function is unity.
There is an r dependence accounting explicitly for the fact that the average number density n�(r)

depends on the distance from the observer: E�=!=1
overlap (x; y) is calculated at N = Nr. The overlapping

contribution of the error can be thus inferred from the calculations of SC with a supplementary
weighted integral.
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A.3. Cosmic Error on Factorial Moments

Let us now concentrate on the error on the factorial moments, obtained from equation (14).
The �nite volume contribution from disjoint cells is

�
�F ~Fk

�2
=

1

V̂ 2

Z
r12�2`

d3r1d
3r2!(r1)!(r2)�(r1; r2) (A10)

with

�(r1; r2) = [�(r1)�(r2)]
�2k

�
@

@x

�k � @
@y

�k
Pr1(x+ 1)Pr2(y + 1)Rr1;r2(x+ 1; y + 1)

�����
x=y=0

: (A11)

From equations (47) and (A6) or (A7), function � depends only on r12, as follows

�(r1; r2) / �(r12): (A12)

Thus the selection e�ects cancel out in the �nite volume contribution to the cosmic error on the
factorial moments. The results of SC (see their x 4.3) can therefore be directly used here, just by
replacing their �(L) � V �2

R
V d3r1d

3r2�(r12) by the weighted average

�e�(L̂) =
1

V̂ 2

Z
r12V̂ ;r22V̂ ;r12�2`

d3r1d
3r2!(r1)!(r2)�(r12): (A13)

The quantity L̂ stands for the e�ective catalogue size L̂ = V̂ 1=3. At leading order to v=V the
integral (A13) reduces to

�e�(L̂) ' V̂ �2
Z
V̂
d3r1d

3r2!(r1)!(r2)�(r12): (A14)

For ! = 1, naturally �e�(L̂) = �(L̂). Thus the �nite volume error with the notation of x 3.2 is,

�2
F[!] �

 
�F ~Fk
Fk

!2

'

 
�F
�=!=1

~Fk

Fk

!2
�e�(L̂)

�(L)
= �2

F

�e�(L̂)

�(L)
: (A15)

The calculation of the contribution (�overlap ~Fk)
2 from overlapping cells, the sum of the edge,

and the discreteness errors (see x 3.2), is easier. Using the fact that Nr / �(r), Fk / N
k
and that

the relative edge e�ect error �2
E does not depend on N in the case � = ! = 1, it is straightforward

to obtain equations (29) and (30).

B. Numerical Calculations

B.1. Cosmic Error and Minimum Variance Weight

In this section the numerical solution of integral equation (50) is considered. Let us de�ne the
step � as

� � (R̂max� R̂min)=Nbin; (B16)
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and the numbers
ri = R̂min + (i� 1=2)�; i = 1; : : : ; Nbin: (B17)

The solution is obtained in the space of step functions ! verifying

!(r) = !i; r 2 [ri ��=2; ri+ �=2[: (B18)

Equation (50) in its discretized form can be written as

NbinX
j=1

��i;j!j + ��i!i + ��i = 0; (B19)

where

��i;j �
�2
F

�(L)V̂

Z ri+�=2

ri��=2

Z rj+�=2

rj��=2
u2
̂(u)v2
̂(v)~�(u; v)dudv; (B20)

��i =
Z ri+�=2

ri��=2

�
�2
E +�2

D(u)
�
u2
̂(u)du; (B21)

��i = �

Z ri+�=2

ri��=2
u2
̂(u)du: (B22)

Note that the cosmic error is simply

�2
cosmic[!] =

NbinX
i;j=1

��i;j!i!j +
NbinX
i=1

��i!
2
i : (B23)

The most di�cult part in determining the optimal sampling vector (!i)i=1;:::;Nbin
is the calculation

of the correlation matrix ��i;j . A new binning is necessary for computing the double integral (B20).
We proceed as follows:

��i;j '
�2
F

2�(L)V̂

NsubbinX
k;l=1

h
u2kv

2
l 
̂(uk)
̂(vl)

~�(uk; vl)�uk�vl + u2kv
2
l 
̂(uk)
̂(vl)

~�(uk; vl)�uk�vl
i
; (B24)

where

�uk = �vk =

(
�=(Nsubbin� 1); 2 � k � Nsubbin� 1
1
2�=(Nsubbin� 1); k = 1 or Nsubbin;

(B25)

�uk = �vk = �=Nsubbin; (B26)

uk = ri + (k � 1)�=(Nsubbin� 1); vl = rj + (l � 1)�=(Nsubbin� 1); (B27)

uk = ri + (k � 1=2)�uk; vl = rj + (l � 1=2)�vl: (B28)

The double summation in equation (B24) avoids calculation of function ~�(u; v) for u = v, where
it might diverge (for example, if �(r) / r� at small scales, then function ~�(u; u) diverges when
 � 2). It remains to compute function ~�(u; v), u 6= v. In equation (49), one can de�ne � as the
angle between the directions r̂1 and r̂2:

� � cos(�) = cos('1 � '2) sin �1 sin �2 + cos �1 cos �2: (B29)
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Equation (49) can then be rewritten as

~�(u; v) =

Z 1

�1
P (�ju; v)d��

�
[u2 + v2 � 2uv�]1=2

�
; (B30)

where P (�ju; v) is the probability distribution function of �, given u and v. (For a spherical
catalog P (�ju; v) = 1=2). Typically, if u and v are large enough compared to R̂min, the function
P (�ju; v) does not depend sensitively on the values of u and v. It increases with �, from zero for
�1 � � � �min, where �min corresponds to the largest e�ective angular size of the catalog, to some
maximum at � = 1, Pmax, depending on the angular size of the catalog. For our SDSS-like catalog,
Pmax is of order 2. The calculation of P (�ju; v) is done numerically for a discrete set of values
of (�i; rj; rk), 1 � i � N�, 0 � j; k � Nbin + 1 and r0 � R̂min, rNbin+1 � R̂max. For each value
of (j; k), a Monte-Carlo simulation is done, i.e., directions r̂j and r̂k are randomly chosen such
that the corresponding cells are included in the catalog. A reasonably accurate calculation, with a
few percent absolute errors requires Niter � 100; 000 iterations for N� = 100. For a given value of
(�; u; v), the estimate Pinterpol(�; u; v) of P (�; u; v) is obtained from a bilinear interpolation between
P (�i; rj; rk), P (�i; rj+1; rk), P (�i; rj; rk+1), P (�i; rj+1; rk+1) where �i is as close as possible to �,
and rj � u � rj+1, rk � v � rk+1. By de�nition, we take P (�i; rj; rk) � 0 if j = 0 or k = 0.
We use the same Monte-Carlo simulation as above (except that we use only one direction r̂j) to

compute the e�ective solid angle on an array 
̂(rj), and then proceed with linear interpolations to
compute estimates 
̂interpol(u) of 
̂(u) at u 6= rj.
To compute the angular average (B30) the following variable is de�ned

z(�) =
1

(z � 2)uv

�
u2 + v2 � 2uv�

�1�z=2
; (B31)

where z '  is the expected power-law index of the two-point correlation function at small scale,
or some value close to it. With the de�nitions �(z) � z�1(z(�)), zm = z(� = �1), zM = z(� = 1),

�zi =

(
(zM � zm)=(Nz � 1); 2 � i � Nz � 1;
1
2(zM � zm)=(Nz � 1); i = 1 or Nz;

(B32)

zi = zm + (i� 1)(zM � zm)=(Nz � 1); (B33)

the correlation matrix can be written as

~�(u; v) '
NzX
i=1

[uv(z � 2)zi]
z=(2�z) Pinterpol(�(zi); u; v)�

�
[uv(z � 2)zi]

1=(2�z)
�
�zi: (B34)

The calculation of ��i follows naturally from

��i =
X

k=1;Nsubbin

�
�2
edge + �2

D(uk)
�
u2k
̂interpol(uk)�uk; (B35)

and one proceed similarly for ��i:

��i = �
X

k=1;Nsubbin

u2k
̂interpol(uk)�uk: (B36)
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The numerical estimate of the e�ective sample volume reads

V̂ '

NbinX
i=1

1

ri+1 � ri

h�

̂(ri+1)� 
̂(ri)

��
r4i+1 � r4i

�
=4 +

�

̂(ri)ri+1 � 
̂(ri+1)ri

��
r3i+1 � r3i

�
=3
i
:

(B37)
The same integration scheme is used to normalize the weight [eq. (9)]. To compute the sample
volume V of our SDSS like catalog, a more accurate estimator is used, with exact calculation of

(r) and an integral on variable r using the trapezoidal method with 100; 000 points.
For the calculation of the terms �2

F, �
2
E and �2

D, we use the results of SC corresponding to the
SS approximation and to  = 1:8 where  is the assumed logarithmic slope of function �(r) for
computing the numerical coe�cients in the di�erent terms contributing to the cosmic error [see
equations (53) to (68) in SC]. Note that, as discussed in SC, these numerical coe�cients are quite
insensitive to  if it stays reasonably close to 1:8. Therefore the same expression is applied for
the cosmic error as a function of QN , N and � even if  6= 1:8 or if function �(`) is not exactly a
power-law, like in the CDM case.

B.2. Accuracy Tests

The di�culty in obtaining accurate results for the optimal weight relies mostly in the estimation
of the correlation matrix ��i;j . Here, we assume that the �nite volume error dominates over the
edge e�ect and the shot noise errors, although we performed extensive accuracy tests including all
sources of error.
In what follows, we study the optimal weight !(r), which depends only on the shape of the

two-point correlation function (and thus not on higher order statistics). We consider a spherical
sample, where there is no need in principle to compute numerically P (�ju; v) as straightforwardly
P (�ju; v) = 1=2. Furthermore, the two-point correlation function is assumed to be a power law of
index � [eq. (33)], which allows the analytical computation of the correlation matrix ��i;j :

��i;j =
8�2�2

F

�(L)V̂
[F (ri +�=2; rj +�=2) + F (ri ��=2; rj ��=2)

� F (ri +�=2; rj ��=2)� F (ri ��=2; rj + �=2)] (B38)

with

F (u; v) �
r

0

(2� )(3� )(4� )

h
uv
n
ju� vj4� + (u+ v)4�

o
+
n
ju� vj6� � (u+ v)6�

o
=(6� )

i
; (B39)

and

V̂ =
4

3
�R̂3

max: (B40)

Therefore

��i = 4�r2i�

 
1 +

�2

12r2i

!
: (B41)

In �gure 8, the minimum variance weight is shown as a function of distance from the observer,
obtained from three di�erent calculations, each with Nbin = 50. The solid curve corresponds to
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Fig. 8.| The minimum variance weight ! is shown as a function of distance R from the observer
in the case the �nite volume error is dominant (the results displayed here correspond to ` = 10
Mpc, but would not change signi�cantly for other values of `). For the �nite volume error, ! does
not depend on the order k. The two point function is assumed to be a power-law �(r) / r� . The
calculations were performed assuming spherical geometry, except for the long dashes which show
the result for a SDSS-like geometry. The solid curve corresponds to the full analytical calculation of
the correlation matrix ��i;j . A dashed curve is almost perfectly superposing to the solid one. In that
case, the numerical scheme given by equations (B24), (B36) and (B34) (with Pinterpol(�ju; v) � 0:5)
has been used. The dotted line shows the result as calculated via a Monte-Carlo simulation plus
bilinear interpolation to compute Pinterpol(�ju; v). The long dashes, corresponding to a SDSS
geometry, were obtained the same way as the dots.

the analytical result [eqs. (B38) and (B41)]. There is a dashed curve almost perfectly superposing
to the solid one, except from the extreme left part of it. In that case, equations (B24), (B36) and
(B34) with P (�ju; v)interpol = 0:5 were used to compute ��i;j and ��i. We have taken Nsubbin = 30
and Nz = 50 (as for all the �gures of the main text, when it is relevant). For both the solid and the
dashed curves, there is an irregularity at each end. The left irregularity, corresponding to the weight
given (nearly) at the center of the catalog, is due to the limitations of the discrete approach. In the
continuous limit, the function !(r) is expected to behave smoothly in the neighborhood of r = 0.
The right irregularity is more di�cult to understand, and will be discussed later. The uctuating
dotted curve is the same as the dashed one, but we computed the probability distribution function
P (�ju; v) by Monte-Carlo simulation as explained in x B.1 (with Niter = 100; 000 iterations for
N� = 100). The left irregularity for this is quite dramatic, as there is one value of the estimated
weight which is negative. Note, however, that the calculation of the �nite volume error is fairly
robust with respect to the weight: the weights given by the solid, the (invisible) short-dashed or
the dotted curve give exactly the same result. The long-dashed curve is the same as the dotted
one, expect that it corresponds to an SDSS like geometry covering thus one quarter of the sky. The
irregularities are less pronounced in that case, due to the anisotropy of the distribution P (�ju; v)
of values of � (see also the solid curves of Fig. 1).
Figure 9 shows the e�ect of changing Nbin when calculating the optimal weight. There are six

curves, corresponding respectively to Nbin = 6, 12, 25, 50, 100 and 200. The method used for the

39



Fig. 9.| Same as �gure 8 except that the sensitivity of the results to the value of Nbin are tested
for Nbin = 6, 12, 25, 50, 100 and 200. The numerical scheme given by equations (B24), (B36) and
(B34) (with Pinterpol(�ju; v) � 0:5) was used.

calculation is the same as the (almost invisible) dashed line in �gure 8. Except for the right and the
left end-points of the curves, resolution is not critical for determining !(r). The left irregularity
on each curve was shown to be unphysical and due to the numerical limitations of our calculation.
The right one is more of a concern, since the estimator of log10[!(R̂max)] increases linearly with
Nbin, suggesting that the actual optimal weight is singular at R̂max. As a consequence, Nbin has
to be large enough to resolve this singularity su�ciently. The cosmic error can be sensitive to the
singularity, especially if the order k is large and if the �nite volume error is signi�cant. In realistic
cases, however, the two-point correlation does not behave like a power-law of index � = �1:8 up
to arbitrarily large scales, thus the singularity is expected to be less pronounced or to disappear.
For example, in the CDM case, the e�ect is less signi�cant, although there is still a slight instability
at R̂max (see Fig. 1).

B.3. The optimal sampling rate

The methods for generating �gures 6 and 7 will be explained in this section. To simplify the
calculations and since it was found in x 4.2 to be a good approximation, we take for the optimal
weight ! the expression given by equation (51). To estimate the cosmic error from equation (B23),
the matrix ��i;j , and the vector ��i have to be computed for rather large values of Rmax in order
to scan a large enough range of the sampling rate f [see eq. (55)]. Solving the implicit equation
for minimizing the cosmic error as a function of the sampling rate by recalculating the matrix
��i;j for each value of f would be too costly from the computational point of view. Instead, we

calculated ��i;j for Rmax � 5000 Mpc and with Nbin = 200. A given value of f corresponds to
some R̂max(f) and thus roughly to some value of ri. This is taken to be the as close as possible to
R̂max(f). To compute the cosmic error corresponding to some value of f , quadratic interpolation
is performed between the values obtained for R̂max(f) = ri�1, R̂max(f) = ri and R̂max(f) = ri+1.
Even this smoothing procedure cannot guarantee smoothness for f as a function of scale, although
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the calculation is valid within a few percents. The implicit equation for �nding the minimum of
function �2

cosmic(f) is easy to solve by bisection as this function is convex (see �gure 7).

C. Asymptotic Regimes

Using the results of SC (valid at leading order in v=V ), this section presents an analytic estimate
of the optimal sampling rate f for a three-dimensional galaxy catalog (x 5.1 and 5.2). This is possible
in the highly and weakly nonlinear regimes, where � � 1 and � � 1, respectively. According to
the results of x 5.1, uniform selection � = 1 can be assumed.
From the calculations of SC, the cosmic error on the factorial moments of order k � 3 in the

highly nonlinear regime is (using the SS approximation, see x A.1)
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where
Nc � N � (C45)

is the typical number of galaxies in a cell located in an overdense region (e.g., BS). At small enough
scales and if  < 3, it is possible that Nc � 1 irrespectively of f . In that case, count-in-cells
statistics is dominated by discreteness e�ects (BS). The edge e�ect error, corresponding to the
term proportional to �v=V and independent of Nc, is negligible compared to the shot noise error.
Equations (61) or (70) follow straightforwardly.
In the weakly nonlinear regime, where � � 1, the Gaussian limit at leading order in � is a good

approximation. The expression (C42) for the error on F1 is still valid. At higher order, however,
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If the scale is large enough, edge e�ects are expected to dominate over the �nite volume errors,
but this property depends on the details of the underlying statistics and on the geometry of the
catalog. More rigorous estimates of the cosmic error, taking fully into account the geometry of the
catalog would be needed to prove it, a level of accuracy outside of the scope of this paper. Exact
calculations of the cosmic error when the size of the cell becomes comparable to the size of the
catalog are indeed quite tedious (see for example Appendix B of SC). Although our approach is
valid only to leading order in v=V , setting v=V = 1 in equations (C42), (C46), and (C47) yields
at least a lower limit for the relative contribution of edge e�ects compared to �nite volume e�ects.
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The result is that the edge error is a few times larger than the �nite volume error (for a spherical
catalog). Assuming that edge e�ects dominate, equations (63) and (72) naturally follow.
Note that if �nite volume e�ects dominate edge e�ects in the regime � � 1, and N � 1, the

optimal sampling rate, with the notations of x 5, becomes

f =

�
1� 3�

L�Nref

�
Lref

L0

�L� 1
1+(L�3)�

; (C48)

where � = 1=5 or 1=9 according to whether the redshifts are collected individually (x 5.1) or
collectively (x 5.2). For the same choice of the parameters as in x 5, we �nd f � 1=20 for individual
collection of redshifts and f � 1=10 for simultaneous collection independently of scale and of the
order k. As a result, the general conclusions of our analysis in x 5.1 and 5.2 are not changed, even
if �nite volume e�ects dominate over edge e�ects.
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